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Worldwide, millions of people suffer from neurological and psychiatric conditions, such as 
schizophrenia, depression, and neurodegenerative diseases. These conditions are often linked to 
hyperactivity of monoamine oxidase B (MAO-B) in the brain, and inhibiting this enzyme can 
reduce oxidative stress, stabilize neurotransmitter levels, and alleviate symptoms. In this context, 
a pharmacophoric model was created using PharmaGist with 31 hits extracted from BindingDB 
to enable a pharmacophoric-based search of potential MAO-B inhibitors in ZincPharmer’s 
chemical space, followed by the building of 10 conformers for each molecule in the software 
OMEGA, screening for structural and electrostatic similarity to safinamide using ROCS (Rapid 
overlay of chemical structures) and EON (Electrostatic similarity for lead-hopping), respectively. 
In addition, the molecular docking with Gold using the score function was performed to rank 
the ligands with the highest probabilities of affinity to MAO-B and then discriminate those with 
suitable physical-chemical, pharmacokinetic, and toxicological features using the tools QikProp, 
SwissADME, and DEREK. Four potential ligands with selective MAO-B inhibitor properties 
were identified, which show promise as future therapeutic agents for MAO-B-related disorders.
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Introduction

Enzymes known as monoamine oxidases are members of 
the flavoprotein oxidase family. They catalyze the reduction 
of the flavin adenine dinucleotide (FAD) cofactor, which 
oxidizes primary and secondary amines. Subsequently, 
the substrate is hydrolyzed non-enzymatically, releasing 
ammonia and forming a functional group aldehyde through 
water condensation. The cofactor is then regenerated by 

oxidizing it with molecular oxygen, producing hydrogen 
peroxide as a reaction byproduct.1

In humans, these enzymes play an important role in the 
catabolism of catecholamines with regulatory implications 
in neurotransmission mediated by adrenaline, dopamine, 
noradrenaline, and serotonin, as well as a neuroprotective 
role against xenobiotics that can cause excitotoxicity.2 In 
humans, there are two isoforms of the enzyme, monoamine 
oxidase-A (MAO-A), which has physiological activity 
predominantly in the peripheral regions of the body, and 
monoamine oxidase B (MAO-B), which has physiological 
activity in the central nervous system.3
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In the field of pathophysiology, MAO-A dysregulation 
is associated with depression; however, positron emission 
tomography studies have shown a significant increase 
in MAO-B activity in patients with episodes of major 
depression.4,5 Furthermore, postmortem studies with 
individuals with schizophrenia showed that the gene 
expression of MAO-A and MAO-B was 45% above 
normal, highlighting that many MAO-B polymorphisms 
are recognized as susceptibility factors for schizophrenia.6

The isoform of MAO-A in Parkinson’s disease is 
responsible for the decrease in dopaminergic levels, 
whereas MAO-B contributes to the pathophysiology 
of the condition by mediating the abnormal synthesis 
of gamma-aminobutyric acid (GABA) and hydrogen 
peroxide in astrocytes. In addition, reactive oxygen species 
are responsible for the suppression and degradation of 
dopaminergic neurons.7

In this context, and with a focus on MAO-B inhibitors, 
Carradori et al.8 present therapeutic indications of this 
pharmacological class for the treatment of Parkinson’s 
disease, as a neuroprotective agent for Alzheimer’s and 
Huntington’s diseases, aiming to prevent oxidative stress 
caused by the Fenton reaction derived from the production 
of hydrogen peroxide of the enzymatic catalysis of MAO-B, 
as well as indication as a future treatment to quit smoking. 

Moreover, Carradori et al.8 highlighted the importance 
of medicinal chemistry for pharmaceutical innovation in 
patent development, in which pharmacokinetic prediction 
methods based on physicochemical properties optimize 
the search and selection of successful candidates for new 
drugs.9 

In this sense, medicinal chemistry offers alternatives 
to identify crucial elements for the planning and design 
of novel drugs. Computational methods aid in the 
identification of therapeutic targets, offer perspectives that 
enhance comprehension of the sites of interaction between 
ligands and proteins, and assist in the virtual screenings 
of potential new drug candidates through ligand-based or 
structure-based studies. Representing a highly valuable 
set of tools for the pharmaceutical industry because it 
drastically reduces the time and expenses associated with 
the discovery and development of novel drugs.10,11

Thus, considering the significance of this protein 
as a pharmacological target for the treatment of central 
nervous system (CNS) disorders, this work aimed to 
search for compounds with selective MAO-B inhibitory 
features through computational methods considering the 
construction of a pharmacophoric model in the webserver 
PharmaGist12 based on the features of 31 compounds with 
high inhibitory activity against MAO-B that were collected 
from the database BindingDB.13 

Then, a pharmacophoric-based search was conducted 
in the platform ZincPharmer14 where 10,000 compounds 
were raised and used to build 10 conformers in the software 
OMEGA15 for each compound obtained.15 Followed 
by screenings with basis on structural and electrostatic 
similarity of the compounds to safinamide (a selective 
MAO-B inhibitor) using the software ROCS (Rapid 
overlay of chemical structures)16,17 and EON (Electrostatic 
similarity for lead-hopping),18,19 respectively, leading to the 
obtention of 1,000 compounds.

Subsequently, a molecular docking study using 
the software GOLD (Genetic Optimization for Ligand 
Docking)20,21 was performed to rank the compounds 
with the 110 highest scores to select those with results 
indicating a high probability of affinity to the target of 
the research. Moreover, contemplating the refinement of 
virtual screening aiming at selective MAO-B inhibitors with 
physical-chemical properties suitable for the development 
of pharmaceutical products. We evaluated the physical-
chemical properties, predictive pharmacokinetics, and 
toxicity alerts of the compounds with the highest scores 
using the software QikProp22,23 and DEREK,24,25 and the 
webserver SwissADME.26-28

Finally, we reached 4 compounds with the best in silico 
results and evaluated their patterns of molecular interactions 
with MAO-B through molecular docking, and compared 
them to the in silico data of selective inhibitors with 
experimental results available in the literature. Noting that 
the reason behind the focus on selective MAO-B inhibitors 
was their clinical efficacy and safety compared with non-
selective or MAO-A irreversible inhibitors that tend to 
present longer effects and serious interactions with drugs 
and food that lead to norepinephrine hyper stimulation.29,30

Methodology

Research for MAO-B inhibitors 

In order to create a suitable pharmacophoric model for 
virtual screening, we searched the BindingDB13 database 
using the descriptor “Monoamine oxidase B Inhibitors” 
with the goal of identifying the fundamental structural 
and physicochemical characteristics shared by ligands that 
exhibit strong inhibitory activity on MAO-B, as indicated 
by inhibitory concentration 50 (IC50) values up to 1.00 nM.

In this sense, BindingDB is a database launched in 2000 
that facilitates research on small compounds. It contains 
carefully selected experimental data from other databases, 
including PubChem, ChEMBL, PDSP Ki, and CSAR. 
Quantitative measurements of the affinity between proteins 
and ligands, such as IC50, inhibition constant (Ki), half 
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maximal effective concentration (EC50), and dissociation 
constant (Kd), as well as experimental characteristics, such 
as assay description and environmental variables like pH 
and temperature, which can be used as search filters.31,32

Noting that 1,454,894 binding data for 7,082 protein 
targets and 652,068 small compounds were present in 
BindingDB in 201833 and that this quantity is currently 
much greater.

Determination of pharmacophore groups 

Pharmacophore is a term that designates attributes of 
the spatial arrangement and physicochemical properties 
that are essential for the interaction of a molecule with 
a specific protein target, therefore, aiming to construct a 
pharmacophoric model for MAO-B based on the ligands 
obtained from BindingDB13 database, the webserver 
PharmaGist12 was used to compare features as aromatic 
regions, hydrophobic groups, hydrogen donors and 
acceptors, as well as positively and negatively charged 
groups between the ligands, looking forward the most 
frequent attributes among the molecules aligned in a three-
dimensional plane. 

Thus, the pharmacophore regions found in the 31 hits 
collected in BindingDB13 were searched in the webserver 
PharmaGist12 and subsequently visualized in the webserver 
ZincPharmer,14 in which a pharmacophore-based search 
was also conducted with the following filters: max hits 
by conf: 1; maximum hits per mole: 1; total molecules 
(hits): 10,000; root-mean-square deviation (RMSD): 1.5; 
molecular weight: 0 to 400 g mol-1; rotatable links: 0 to 
10, considering purchasable molecule database updated 
on 12/20/2014, resulting in 10,000 ligands.

Electrostatic and conformational correlation screening 

10,000 ligands were gathered for the ZincPharmer 
search and sent to OMEGA15,34 from OpenEye Scientific 
to produce 10 conformers. The goal of these conformers 
was to assess potential rotational stereochemical properties 
in a three-dimensional plane that could have an impact on 
biological activity. After that, screening was done using 
the ROCS16,17 software with the 10 conformers of each 
ligand. This enabled the obtaining of molecules with 
structural similarity to safinamide. Noting that EON18,19 was 
used to assess electrostatic similarity among the ligands 
in screening, also considering safinamide as a MAO-B 
selective inhibitor standard.

Emphasizing that ROCS16 and EON18 are instruments 
that carry out inferential correlation analyses, assessed by 
means of the Tanimoto coefficient; molecules exhibiting 

outcomes more akin to the safinamide exhibit values nearer 
to 1, whereas the most dissimilar molecules display values 
closer to 0. Then, a predictive study of the target and ligand 
interaction was performed on the 1000 molecules that 
yielded the best findings after the application of electrostatic 
and structural filters. 

Screening by molecular docking 

The ligands with structural and electrostatic similar 
to safinamide obtained in the previous research step were 
subjected to molecular docking in the software GOLD20-21 
using a genetic algorithm to optimize docking times and 
increase the possibilities of determining the best fit.35 Only 
the molecules ranking in the 110 best scores (including 
2 safinamide conformers) remained in the study.

The molecular docking was conducted using a file 
with data from the crystal structure of human MAO-B in 
complex with zonisamide presenting resolution of 1.80 Å. 
This file is available at the Protein Data Bank (PDB) under 
the PDB-ID code 3PO7. 

In the method adopted, the water molecules from 
the crystallography were eliminated, the FAD cofactor 
remained in the monomer A active site of the protein 
which was the sole area that was taken into consideration 
for docking. ChemPLP was the scoring function of choice. 
The redocking method was used to validate the results 
generated by GOLD, considering a root mean square 
deviation (RMSD) value equal to or less than 2 Å between 
the pose of zonisamide generated by GOLD and the pose 
of the ligand in the crystal structure. 

After ranking the 110 best scores, the ligands’ 
physicochemical characteristics were extracted with the 
use of the software QikProp, and evaluated according 
to Lipinski’s rules considering a tolerance of just one 
violation. 

Prediction of pharmacokinetic and toxicological properties 

Looking forward a new drug reaching the clinical 
practice, the pharmacokinetic and toxicological behavior 
is an essential factor in determining dosage choices, 
schedules, adjustments, and treatment adequacy.36-39 As 
well as for planning the development of formulations 
that maximize bioavailability, increase metabolic stability 
through the synthesis of pro-drugs, delay of the drug release 
and absorption profile to prolong the pharmacological 
action, or even allow for the site-specific release of drugs, 
as in the case of enteral release tablets and capsules.40,41

Thus, using the software QikProp from Schrödinger 22,23 
and DEREK from Lhasa,24,25 as well as SwissADME,26-28 
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pharmacokinetic and toxicological parameters of the 
compounds chosen in the molecular docking screening 
were assessed. 

The compounds with any toxicity alerts based on Custom 
Prediction and Lhasa Predictions were rejected concerning 
the toxicological parameters assessed by DEREK.42 

Additionally, the descriptors permeability in Caco cells 
(log Caco), log MDCK (Madin-Darby Canine Kidney cells), 
percentage of oral absorption, quality of the human model of 
oral absorption, binding to human serum albumin (log KHSA),  
blood-brain barrier (log BB), number of metabolic 
reactions, activity in the central nervous system, and stars 
were taken into consideration for the pharmacokinetic 
predictions made in the QikProp22 program. Furthermore, 
the ability of the remaining compounds to inhibit CYP450 
enzymes and to be transported by P-glycoprotein was 
assessed on SwissADME.26-28 

The most promising ligands were those with a score 
value greater than that of safinamide, no toxicity alerts, and 
acceptable predictive pharmacokinetic data.

Concerning the computational tools used in this step 
of the research, QikProp is a software that can produce 
physicochemical and pharmacokinetic predictions from 
chemical structure data in SDF format.22 

DEREK is a software that generates models that enable 
the analysis of the structure-activity of molecules with 
input in mol (.mol), sketch (.skc) formats or .SDF (.sdf)  
following algorithms for automating toxicological 
predictions in the form of alerts.42 And SwissADME is 
a free webserver that provides free access to a variety of 
fast and reliable predictive models for physicochemical 
properties, pharmacokinetics, druggability according to 
medicinal chemistry parameters, with the presentation of 
results in in-house models such as iLOGP, Bioavailability 
Radar and BOILED-Egg.28

Results and Discussion

This study employed an approach based on ligand aided 
by molecular docking followed by selection with a basis 
on desired properties for drug discovery and development, 
as summarized in Figure 1. The details on the results can 
be found in their respective topics below.

Pharmacophore-based virtual screening
 
Like high-throughput screening, virtual screening 

involves the use of computers to search and select molecules 
from large libraries that have records of biological activity, 
structural, and physicochemical data to identify the most 
promising hit, lead or drug candidates.

Thus, the study done was intended to look for inhibitors 
of MAO-B in the Binding DB database. It produced 
7309  hits, out of which 31 were within the IC50 cutoff 
value of 1 mM and had a range of amplitude of 0.918 with 
a minimum value of 0.00820 mM.

These substances exhibit strong inhibitory activity 
against the specified target, as indicated by their low 
IC50 values. Emphasizing that every substance taken 
out of Binding DB showed experimental results from 
analyses using human MAO- B. However, it is important 
to highlight that enzyme kinetics and inhibition assays can 
present considerable variability due to the experimental 
procedures adopted, including substrate and product 
quantification methods, factors such as the influence of 
pH, ionic strength, allosteric regulation sites, cascade 
reactions, substrate concentration, and the concentration 
of reaction products with inhibitory or denaturing activity 
on the test enzyme.43

Nevertheless, it is noteworthy that the molecules 
derived from Binding DB were examined using human 
MAO-B, as this lessens the difficulties resulting from 
structural variations that diminish the similarity between 
the human protein and the enzyme found in animal models 
or microbes.11,44 But, it ignores polymorphisms that affect 
enzymatic functionality, as well as the clinical presentation 
of neuropsychiatric disorders associated with MAO-B, and 
how responsive a patient is to treatment.45-48

 The chemical structure, molecule’s ID, IC50 and 
International Union of Pure and Applied Chemistry (IUPAC) 
name from the ligands obtained in the Binding DB database 
can be seen in Table 1.

A molecular alignment has been done with the 

Figure 1. The process of selecting the best MAO-B inhibitor candidates for 
virtual screening involves a number of steps, including the selection of hit 
molecules in the BindingDB, pharmacophoric-based search, structural and 
electrostatic similarity with the selective inhibitor safinamide, molecular 
docking-based prediction of affinity to MAO-B score, as well as predictive 
toxicological and pharmacokinetics, resulting in 4 molecules out of 10,000.
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Table 1. Ligands obtained in the BindingDB database with their structures, IDs from PubChem, CHEMBL and BindingDB, IC50, and IUPAC name

Structure
ID PubChem / CHEMBL / 

BindingDB
IC50 / nM IUPAC name

Ligand 1

CID 4688 
CHEMBL673 

BDBM50172756
0.00820

N-benzyl-N-methylprop-2-yn-
1-amine

 

Ligand 2

CID 10314028 
CHEMBL348961 
BDBM501211688

0.0140
3-methyl-8-(4,4,4-trifluorobutoxy)

indeno[1,2-c]pyridazin-5-one

 

Ligand 3

CID 181620 
CHEMBL315361 
BDBM50131081

0.0480
4-oxo-4H-1-benzopyran- 

3-carboxylic acid

 

Ligand 4

CID 46895501 
CHEMBL4129303 
BDBM50276359

0.134
3-(3-bromophenyl)-

6-methylchromen-2-one

 

Ligand 5

CID 63718419 
CHEMBL3319268 
BDBM50046943

0.227
N-(3,4-dichlorophenyl)-1H-indole-

5-carboxamide

 

Ligand 6

CID 13441539 
CHEMBL1835228 
BDBM50355323

0.310
6-methyl-3-(4-methylphenyl)

chromen-2-one

 

Ligand 7

CID 11708681 
CHEMBL414637 
BDBM50121685

0.318
5-(4,4,4-trifluorobutoxy)-
2,3-dihydroinden-1-one

 

Ligand 8

CID 77844667 
CHEMBL3319256 
BDBM50046866

0.386
N-(3,4-dichlorophenyl)-

1-methylindazole-5-carboxamide
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Structure
ID PubChem / CHEMBL / 

BindingDB
IC50 / nM IUPAC name

Ligand 9

CID 132941420 
CHEMBL4206812 

BDBM5045319
0.400

N-(3-chlorophenyl)-4-oxochromene-
3-carboxamide

 

Ligand 10

CID 2629406 
CHEMBL4068321 
BDBM50259594

0.500
7-[(4-bromophenyl)methoxy]

chromen-2-one

 

Ligand 11

CID 77844601 
CHEMBL3319244 
BDBM50046950

0.586
N-(3,4-dichlorophenyl)-1H-indazole-

5-carboxamide

 

Ligand 12

CID 76314457 
CHEMBL3121793 
BDBM50496171

0.588
methyl 7-[(3-fluorophenyl)methoxy]-

2-oxochromene-3-carboxylate

 

Ligand 13

CID 77844723 
CHEMBL3319272 
BDBM50046948

0.612
N-(3,4-dichlorophenyl)-

1-(1H-indazol-5-yl)methanimine

 

Ligand 14

CID 50994176 
CHEMBL1642678 
BDBM50334292

0.660
5-(4-phenylbutyl)-1H-indole-

2,3-dione

 

Ligand 15

CID 77844664 
CHEMBL3319247 
BDBM50046878

0.661
N-(4-chloro-3-fluorophenyl)-
1H-indazole-5-carboxamide

 

Ligand 16

CID 77844718 
CHEMBL4061639 
BDBM50232425

0.662
N-(3-chloro-4-fluorophenyl)-

1-methylindazole-5-carboxamide

 

Table 1. Ligands obtained in the BindingDB database with their structures, IDs from PubChem, CHEMBL and BindingDB, IC50, and IUPAC name (cont.)
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Structure
ID PubChem / CHEMBL / 

BindingDB
IC50 / nM IUPAC name

Ligand 17

CID 132941421 
CHEMBL4209203 
BDBM50453020

0.670
N-(3,4-dimethylphenyl)-

4-oxochromene-3-carboxamide

 

Ligand 18

CID 77844663 
CHEMBL3317469 
BDBM50046879

0.678
N-(3-chloro-4-fluorophenyl)-
1H-indazole-5-carboxamide

 

Ligand 19

CID 46847345 
CHEMBL1835231 
BDBM50355325

0.740
3-(3-bromo-4-methoxyphenyl)-

6-methylchromen-2-one

 

Ligand 20

CID 76318046 
CHEMBL31211792 

BDBM50355325
0.770

7-hex-5-ynoxy-3-(4-methoxyphenyl)
chromen-2-one

 

Ligand 21

CID 134816193 
CHEMBL4079843 
BDBM50259630

0.800
7-[(4-bromophenyl)methoxy]-

3-chloro-4-methylchromen-2-one

 

Ligand 22

CID 44622873 
CHEMBL570731 
BDBM50300895

0.800
3-(3-methoxyphenyl)-6-
methylchromen-2-one

 

Ligand 23

CID 76336202 
CHEMBL3121865 
BDBM50496179

0.875
methyl 7-hexoxy-2-oxochromene-

3-carboxylate

 

Ligand 24

CID 105624050 
BDBM166634

0.890
7-[(4-fluorophenyl)methoxy]-

3,4-dihydro-2H-naphthalen-1-one

 

Table 1. Ligands obtained in the BindingDB database with their structures, IDs from PubChem, CHEMBL and BindingDB, IC50, and IUPAC name (cont.)
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Structure
ID PubChem / CHEMBL / 

BindingDB
IC50 / nM IUPAC name

Ligand 25

CID 179342 
CHEMBL19004 
BDBM50252506

0.900
3,4-dimethyl-7-[(5-propan-2-yl-
1,3,4-thiadiazol-2-yl)methoxy]

chromen-2-one

 
Ligand 26

CID 886539 
CHEMBL4097867 
BDBM50259595

0.900
7-[(4-bromophenyl)methoxy]-

4-methylchromen-2-one

 
Ligand 27

CID 561354 
CHEMBL142799 
BDBM50409101

0.900
7-phenylmethoxy-2,3-dihydro-

1H-cyclopenta[c]chromen-4-one

 
Ligand 28

CID 807313 
CHEMBL108697 
BDBM50409097

0.912
7-[(3-fluorophenyl)methoxy]-
3,4-dimethylchromen-2-one

 
Ligand 29

CID 155568351 
CHEMBL4591558 
BDBM50535909

0.912
N-(2-bromophenyl)-4-oxochromene-

3-carboxamide

 
Ligand 30

CID 2235896 
CHEMBL1213297 

BDBM36478
1.00

(6-oxo-7,8,9,10-tetrahydrobenzo[c]
chromen-3-yl) benzoate

 
Ligand 31

CID 77844772 
CHEMBL3319273 
BDBM50046949

1.00
N-(3,4-dichlorophenyl)- 

1-(1-methylindazol-5-yl)methanimine

 

IC50: half maximal inhibitory concentration.

Table 1. Ligands obtained in the BindingDB database with their structures, IDs from PubChem, CHEMBL and BindingDB, IC50, and IUPAC name (cont.)



In silico Screening of Monamine Oxidase B Inhibitors for the Treatment of Central Nervous System Disorders da Costa et al.

9 of 21J. Braz. Chem. Soc. 2025, 36, 4, e-20240192

31  compounds extracted from Binding DB to identify 
the pharmacophoric areas in the Web Server PharmaGist. 
The outcome showed that two aromatic areas and a 
hydrogen acceptor region were common in 29 out of the 31 
compounds aligned. Highlighting that compounds 1 and 7 
did not take part in the alignment because of high structural 
variation concerning the other substances.

The pharmacophoric regions determined in Web Server 
PharmaGist can be seen in Figure 2.

Although the pharmacophoric regions identified in this 
study differ from those found by Gritsch et al.,49 who reported 
three hydrogen acceptor regions, a hydrophobic region, and 
an aromatic ring, as well as from Boppana et al.,50 who 
found a hydrogen acceptor region, a hydrogen donor region, 
and an aromatic ring, they do corroborate with the findings 
of Souza et al.51 All the examples, however, clearly have 
an aromatic ring with at least one hydrogen acceptor area 
present. Therefore, there is consistency between the results 
obtained and the literature on this topic.

Generation of conformers and sorting by electrostatic and 
structural similarity

 
Following the creation of the pharmacophoric 

model, 10,000 hits were found through a search on the 
ZincPharmer14 web server. These hits were then used 
to produce 10 conformers using the software Omega15 
to assess the impact of stereochemical and rotational 
properties in three-dimensional plane over the biological 
activity of the chosen molecules. Next, using the 
software programs ROCS,16 1000 ligands were filtered 
based on their structural and electrostatic similarity to  
safinamide.

The software OMEGA was incorporated into the 
research workflow due to the work of Perola and 
Charifson.52 extensive analysis of the energetic and 
conformational variations resulting from ligand-target 

protein interaction. They discovered a strong correlation 
between ligand flexibility and tension energy with binding 
affinity to the target protein, which allowed for the 
identification of molecules in conformations more likely 
to exhibit desired bioactivity.

Additionally, the software EON18 was chosen because 
electrostatic parameters affect the ligand-target interaction, 
as shown by Boström et al.,53 who found that the substance 
5-(4-piperidyl)-3-isoxazole (4-pyol) has potential 
therapeutic applicability for treating coagulation disorders 
through electrostatic comparison via EON with tranexamic 
acid. Concurrently, the ROCS software enables screenings 
centered on structural elements pertinent to the intended 
impact and structural comparisons with ligands whose 
biological activity is previously established.17,54

In this regard, Crisan et al.55 report positive outcomes 
from in silico studies for the screening of MAO-B 
inhibitors using the OMEGA, EON, and ROCS. They made 
conformer banks with molecules compared with safinamide 
using the software EON and ROCS, which helped discover 
the natural product cardamonin ((E)-1(2,4-dihydroxy-
6-methoxyphenyl)-3-phenylprop-2-em-1-one) and reuse 
of monobenzone and fenamisal for Parkinson’s disease 
treatment.

Therefore, it is expected that the 1000 ligands screened 
in this study using the OMEGA, EON, and ROCS tools 
exhibit pharmacodynamic properties similar to those of 
safinamide, a reversible MAO-B inhibitor with a more 
favorable side effect profile than irreversible inhibitors 
like rasagiline and selegiline, which inactivate MAO-B 
for an extended period, resulting in the occurrence of 
serious side effects as well as drug interactions that 
may cause cardiac side effects due to raises levels of  
cathecolamines.56

Screening by molecular docking

The 1000 ligands that were selected based on their 
electrostatic potential and structural resemblance to 
safinamide underwent molecular docking assay using the 
target 3po7 in the software GOLD. This approach led to 
the extraction of 110 molecules (including 2 safinamide 
molecules), whose scores varied from 66.93 to 101.2 
with a range of 34.27, average of 90.44, and median  
of 90.59.

The redocking method was used to validate the in silico 
assay. This method assesses the ability of the software to 
replicate the initial pose of the ligand co-crystallized with 
the target protein; RMSD values below 1 are regarded as 
excellent, values between 1 and 2 as good, values between 
2-3 as moderate, and values above 3 as incorrect.57 

Figure 2. The pharmacophoric model, which was constructed using 
PharmaGist, shows two structural and physical-chemical characteristics 
among 29 hits that were taken from BindingDB; two aromatic sections 
are shown in purple, and a hydrogen acceptor region is shown in orange.
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The best pose determined by GOLD for zonisamide 
and its comparison with the crystal structure are shown in 
Figure 3. The RMSD achieved was 0.428 Å.

The three-dimensional coordinates of the MAO-B used 
in the validation procedure were x = 53.32, y = 153.71, and 
z = 25.55 with a radius of 8.8 Å, and they designate the 
orthosteric site of the protein, a region where reversible and 
selective inhibitors as zonisamide and safinamide interact 
with MAO-B,58 enabling the use of molecular docking as 
a strategy to identify interactions between an unknown 
ligand and MAO-B residues to estimate binding affinities 
and potential biological activity.59

The average score achieved by the two safinamide 
molecules was 89.57 (one in a conformation taken from 
the PDB and the other from OMEGA). And this average 
was used as a cutoff value for the selection of ligands with 
suitable toxicological and pharmacokinetic properties for 
the study, and the discovery of new MAO-B inhibitors.

Emphasizing that in this virtual screening, the ligands 
with scores higher than 89.57 presented desired predictions 
of association/affinity with MAO-B through an empirical 
approach (ChemPLP score function) that considers 
hydrogen bonds, numerous potentials for modeling van der 
Waals interactions, repulsion potentials, as well as steric 
complementarity with a low computational cost.60-62

The 110 ligands that had been screened by molecular 
docking were then evaluated for their physicochemical 
characteristics in an effort to weed out molecules that were 
not acceptable for the development of oral formulations.

Physical-chemical properties 
 
Correlations between physical-chemical properties 

and biological activity/toxicity have been found in several 

medicinal chemistry investigations into the chemical space 
of ligands of interest. These correlations are important for 
the screening of new drug candidates and are also helpful 
in absorption, distribution, metabolism, excretion and 
toxicity (ADMET) optimization campaigns, modulating 
pharmacological potency, and repurposing known 
molecules with promising applications for the treatment 
of a particular disease.63,64 

In this case, descriptive analysis and comparison with 
druggability metrics were conducted accounting with 
molecular weight values, frequencies of acceptor and 
donor groups of hydrogen interactions, and octanol/water 
partition coefficient among the 110 ligands screened by 
molecular docking. 

The results of the descriptive analysis indicate that the 
ligands had more hydrogen acceptor groups than hydrogen 
donor groups, presenting average of 0.83, median of 1 and 
range of 3.25 (minimum = 0; maximum = 3.25). In addition, 
the frequency of hydrogen acceptor groups observed 
among the ligands had an average of 5.9, median of 5.50, 
and the range between the minimal value (2.25) and the 
maximum (10.5) was 8.2.

Regarding the octanol/water partition coefficient, 
the average achieved among the ligands was 3.59, with 
median of 3.57, and range of 8.3 (minimum = -1.18; 
maximum = 7.13). While the molecular weight among the 
ligands showed a range of 196.24, with a minimum value 
of 303.35 and a maximum value of 499.59. The average 
was 359.02 g mol-1, with a median value of 355.41 g mol-1. 

Thus, considering passive transport by diffusion through 
the biological barriers of the body, Lipinski’s rule of five 
recommends that a molecule have less than 5 hydrogen 
donor groups and less than 10 acceptor groups, an octanol/
water partition coefficient that does not exceed 5, and a 
molecular weight inferior to 500 Da in order to present 
satisfactory oral absorption.65-67 Therefore, it was found 
that 16 ligands were over the cutoff value for the octanol/
water partition coefficient, 2 ligands violated the maximum 
number of hydrogen donor groups, and none violated the 
molecular weight parameter. Noting that between the 
ligands with violations of Lipinski’s rules, none of them 
violated more than one rule, so all the ligands proceeded 
to the next in silico assays. 

In conclusion, the descriptive physical-chemical 
analysis of the ligands evaluated reveals promising 
candidates for further research. In this context, possible 
perspectives applicable to the ligands obtained by molecular 
docking screening, as well as for the pharmacophoric 
model created are ADMET optimization through: 
(i) bioisosterism, where isosteres (functional groups with 
similar shape and electronic properties) replace part of the 

Figure 3. Overlap between the co-crystallized molecule (blue) and 
the best pose generated by GOLD (green), FAD co-factor (white), 
RMSD = 0.428 Å.
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ligands as proposed structural modifications to explore 
structure-activity relationship features of novel substances68 
on MAO-B; and (ii) structural simplification aiming at new 
compounds from large lead ones.69

Prediction of toxicological properties

The phenomenon known as toxicity is the result of an 
organism being exposed to chemicals. Usually, it depends 
on the dose and duration of exposure and can show up 
differently among cell types/lineages, developmental 
stages, or physiological states of the organism. Additionally, 
the chemical agents can interact with various molecular 
targets and may cause cellular or tissue damage or 
dysfunction, whose reversibility depends on the degree of 
impairment in the biological system.70-74

In this context, the computational techniques enable 
accurate screening of numerous drugs in a short amount 
of time and at comparatively lower costs than in vitro 
and in  vivo models. This contributes to lessening the 
requirement for animal models, which is a significant 
ethical concern in biomedical research.75 Moreover, it 
also makes it possible to assess various forms of toxicity 
extensively, which aids in the comprehension of potential 
toxicity-related mechanisms of action.76

Therefore, in this investigation, the following toxicity 
alerts were taken into account using DEREK’s computational 
toxicological prediction tests: carcinogenicity, mutagenicity, 
chromosome damage, teratogenicity, hERG channel 
inhibition, nephrotoxicity, hepatotoxicity, skin sensitization, 
photo allergenicity, mitochondrial dysfunction, effect of 
cyanide type, thyroid toxicity, modulation of androgen 
receptors, modulation of glucocorticoid receptors and 
methemoglobinemia.

Out of all the 110 ligands screened by molecular 
docking, only 24 ligands (64, 276, 292, 309, 325, 354, 365, 
401, 412, 451, 596, 627, 698, 720, 775, 781, 824, 843, 903, 
939, 973, 984, 986, and 994) were not associated with any 
toxicity alert in the in silico tests. Their ZincPharmer ID 
and chemical structure can be seen in Table 2.

These ligands were then subjected to in silico 
pharmacokinetic prediction assessments. It should be 
mentioned that the standard molecule of the study, 
safinamide, had two warnings about toxicity: one relating 
to the blockage of hERG channels linked to the type III 
pharmacophore, and the other about nephrotoxicity related 
to the presence of a halogenated benzene group.

However, this alert of cardiotoxicity found in safinamide 
can be interpreted as null, because selective MAO-B 
inhibitors are not linked to the risk of hypertensive crisis.77

Table 2. Ligand with absence of toxicity alerts in the in silico analysis, their ZincPharmer ID and chemical structure

Ligand Structure and ZincPharmer ID Ligand Structure and ZincPharmer ID

64

 
ZINC40159782

276

 
ZINC69844252

292

 
ZINC29522538

309

 
ZINC44895437

325

 
ZINC4950251

354

 
ZINC91981893
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Ligand Structure and ZincPharmer ID Ligand Structure and ZincPharmer ID

365

 
ZINC71765131

401

 
ZINC93983433

412

 
ZINC06973093

451

 
ZINC06748767

596

 
ZINC77392807

627

 
ZINC82148218

698

 
ZINC7026612

720

 
ZINC07268854

775

 
ZINC19348852

781

 
ZINC90094627

824

 
ZINC88380864

843

 
ZINC38873793

Table 2. Ligand with absence of toxicity alerts in the in silico analysis, their ZincPharmer ID and chemical structure (cont.)
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Furthermore, Jost78 reviewed the literature concerning the 
clinical outcomes and adverse effects of MAO-B inhibitors 
and found no significant influence in tyrosine depletion and 
no negative influence of safinamide on the duration of the 
ventricular action potential (QT intervals), also noted safety 
when used in conjunction with serotonin and norepinephrine 
reuptake inhibitors and selective serotonin reuptake inhibitors 
in individuals with Parkinson’s disease and depression, and 
no reports of the occurrence of serotonergic syndrome, as 
well as no events concerning nephrotoxicity

Within this framework, Hemmerich and Ecker79 
highlight that the primary obstacles to the predictive 
potential of in silico techniques for toxicity assessment 
are data accessibility, model interpretability, and a 
certain amount of intrinsic uncertainty in computational 
tools. Moreover, DEREK’s main limitation of the 
outputs is the capacity for human integration of various 
structural, physicochemical rules and biological data into 
programming.34

Noting that the halogenated benzene alarm is valid in 
safinamide ((2S)-2-{4-[(3-fluorobenzyl)amino]phenyl} 
propanamide) because it has a fluorine atom in its structure, 
which demonstrates the need for future investigations 
that assist in the discrimination of structurally similar 
molecules, where the presence of certain functional 
groups represents a determinant of toxicity. As in the case 
of carbamazepine and oxycarbamazepine, where the first 
has a double bond between carbons 10 and 11 that requires 
oxidation through reactions catalyzed by CYP450 to form 
the intermediate metabolite 10,11-epoxidecarbamazepine, 
which is an extremely reactive compound capable of 
reacting with nucleophilic sites of proteins and nucleic 
acids, while oxycarbamazepine has a ketone group in 
position 10, which is reduced to a hydroxyl group during its 
metabolism to form the non-toxic intermediate metabolite 
10-monohydroxy-oxycarbamazepine and the final product 
10,11-dihydroxy-oxycarbamazepine after hydroxylation of 
the carbon at position 11.80

Ligand Structure and ZincPharmer ID Ligand Structure and ZincPharmer ID

903

 
ZINC07652641

939

 
ZINC89393411

973

 
ZINC20731299

984

 
ZINC07392264

986

 
ZINC84826429

994

 
ZINC72247560

Table 2. Ligand with absence of toxicity alerts in the in silico analysis, their ZincPharmer ID and chemical structure (cont.)



In silico Screening of Monamine Oxidase B Inhibitors for the Treatment of Central Nervous System Disordersda Costa et al.

14 of 21 J. Braz. Chem. Soc. 2025, 36, 4, e-20240192

Pharmacokinetic predictions

The ligands 309, 325, 412, 596, 627, 639, 775, 903 
and 984 and the standard molecule safinamide presented 
satisfactory results in the pharmacokinetic predictions 
of absorption, distribution and metabolism carried out 
in the QikProp, considering the following descriptors 
stars, human oral absorption, percentage of human oral 
absorption, permeability in Caco cells (log Caco) and in 
MDCK cells (log MDCK), metabolic reactions, binding 
to human serum albumin (log KHSA), central nervous 
system activity (CNSa) and permeability in the blood-brain 
barrier (log BB).

The results of ligands with satisfactory results in 
screening based on pharmacokinetic prediction can be 
seen in Table 3.

The results from QikProp, according to Ioakimidis et al.81 
strongly correlate with experimental data on octanol-water 
partition coefficient (log P), aqueous solubility (log S), 
adiabatic and vertical ionization potentials, and dipole 
moments. The software generates results that follow trends 
expected in experimental permeability data of Caco-2 and 
MDCK cells, but it biases the results in terms of blood-brain 
barrier penetration and predictions of central nervous system 
activity because it takes into account a compilation of 
compounds not expected to penetrate the blood-brain barrier. 

In this sense, the parameter predicting activity in 
the central nervous system presented a value of 0 for 
safinamide, highlighting that it is a drug with known activity 
at the central level, corroborating Ioakimidis et al.,81 And 
only ligand 775 showed any predictive value for CNSa. 
Therefore, proper in vivo experimentation is needed to 
characterize the quality and extension of the activity of the 
ligand over the CNS.

Concerning the parameter stars, the results obtained 
suggest high reliability of the data obtained by indicating 
chemical similarity between the ligands screened with 
known drugs from the QikProp database.82

Proceeding to other parameters of analysis, the term 
“absorption” refers to the process by which a drug enters 
the bloodstream after administration. In this context, the 
physical-chemical results indicate that the nine compounds 
under analysis have properties that are advantageous for oral 
absorption because they follow the Lipinski’s guidelines. 
However, according to Benet et al.,83 Lipinski’s guidelines 
are only predicated on physicochemical characteristics 
pertaining to the passive passage of molecules across cell 
membranes.

Thus, the software Qikprop was used to predict 
the permeability in Caco-2 and MDCK cells because 
substances pass through biological membranes involving a 
variety of lipids (such as triglycerides and cholesterol rather 
than just octanol and water) and transporters that affect the 
levels of drug absorption through both active transport and 
facilitated diffusion.84,85

In the software, the parameter human oral absorption 
can be expressed categorically as 1, 2, or 3, which stands 
for low, medium, and high absorption, respectively. The 
parameter percentage of oral absorption can present values 
below 25 that indicate a low percentage of oral absorption in 
humans, while values above 80 indicate a high percentage 
of oral absorption. While cellular permeability in Caco-2 
and MDCK cells is low when these parameters present 
values below 25, and high when above 500.86

Thus, beyond the process of absorption, a drug candidate 
with action in the CNS needs to cross the space related to 
adheren junctions and occluding zones of endothelial cells, 
which restrict the passage of endogenous and exogenous 

Table 3. In silico pharmacokinetic predictions of the ligands screened with QikProp; permeability in Caco cells (log Caco) and in MDCK cells (log MDCK); 
human oral absorption (HOA); percentage of human oral absorption (HOA%); permeability in the blood-brain barrier (log BB); binding to human serum 
albumin (log KHSA); metabolic reactions, central nervous system activity (CNSa), and Stars

Ligand Log Caco2 Log MDCK HOA HOA / % Log BB Log KHSA
Metabolic 
reactions

CNSa Stars

Safinamide 116.708 179.65 3 75.653 -0.467 -0283 6 0 0

325 1614.12 830.04 3 100 -0.541 0.461 3 0 1

412 3075.46 3368.49 3 100 -0.112 0.328 2 0 0

984 1147.14 1514.60 3 91.97 -0.317 -0.764 2 0 0

903 1675.97 2531.69 3 100 -0.354 0.548 2 0 0

775 833.82 1363.60 3 100 0.349 0.773 5 1 0

309 2908.44 1568.60 3 100 -0.446 -0.123 3 0 0

596 1262.94 1575.19 3 100 -0.457 -0.110 0 0 0

627 3318.46 1808.93 3 100 -0.011 0.564 3 0 1

939 1650.99 850.50 3 100 0.556 0.304 4 0 0
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molecules through the blood-brain cell barrier, without 
major limitations, preferably presenting low polar surface 
area, an octanol/water partition coefficient of at least 1.5, and 
low polar surface area. If not, active transport mechanisms 
mediated by membrane proteins will be required, as in the 
case of cerebral transport of glucose and other nutrients.87

Noting that in the CNS, cerebrospinal fluid replaces 
blood in its function. This fluid is formed in the choroid 
plexus, a structure found in the cerebral ventricles, 
where a simple epithelium carrying several membrane 
transporters for nutrients, drugs, as well as their metabolites, 
can transport these substances from the blood to the 
cerebrospinal fluid or from the CNS to the blood. As the 
OATP1A2 transporter, a protein that permits the entry of 
substances of high polarity into the CNS, such as triptans, 
a class of drugs used to treat migraines.88

Besides, the kinetics of drugs in the CNS involves 
an equilibrium between the concentration of free drug 
available to interact with its pharmacological target and 
the concentration of drug bound to plasma proteins, where 
high affinity to these proteins decreases the concentration 
of drug in the cerebrospinal fluid. Furthermore, in this 
context, high lipophilicity contributes to high permeability 
across the blood-brain barrier but with less specificity of 
distribution between the body tissues.89

Thus, the pharmacological effect depends on the 
time required for the drug to reach the state of dynamic 
equilibrium between the blood and the cerebrospinal 
fluid, which along with the variables mentioned above, 
can also be affected by a wide variety of transporters 
including P-glycoprotein, Breast Cancer Resistance 
Protein (BCRP) proteins, multidrug resistance-type efflux 
proteins that prevent some drugs from reaching therapeutic 
concentrations in the CNS.90

In this context, log KHSA is a parameter that predicts 
the binding profile of molecules to serum albumin, where 

values from -1.5 to 1.5 are ideal for drug candidates, 
while the parameter log BB presents predictive values for 
blood-brain barrier penetrability within the range of -3 to 
1.2.91 Therefore, considering the distribution parameters 
analyzed, the selected ligands have appropriate predictive 
characteristics to reach the CNS. Additionally, only 
ligands 309, 325, 412, and 775 presented positive results 
as substrates for P-glycoprotein.

Following to the parameters concerning metabolism, 
QikProp has the descriptor number of metabolic reactions, 
which is used to identify metabolic barriers that limit the 
ability of the test substance to reach the active site once it 
enters the bloody circulation, thereby providing an estimate 
of the steps involved in the biotransformation process. 
According to Ntie-Kang et al.91 and Fatima et al.,92 values 
in the range of 1 to 8 are ideal for screening purposes. 
Safinamide exhibited six distinct potential reactions, 
whereas the number of reactions ranged between 0 and 5 
for the ligands under study.

Moreover, inhibitory activity of CYP450 enzymes was 
assessed using the webserver SwissADME encompassing 
isoforms from the CYP1, CYP2, and CYP3 families, which 
are enzymes accountable for the metabolism of roughly 
80% of drugs used in clinical practice.93 The isoforms 
evaluated were CYP1A2, CYP2C19, CYP2C9, CYP2D6, 
and CYP3A4.

The results obtained in SwissADME predicting the 
inhibition of CYPs and substrate for P-glycoprotein are 
shown in Table 4.

CYP inhibition increases the half-life of certain drugs 
due to the inhibition of metabolic transformations required 
for their elimination, consequently contributing to the 
occurrence of adverse effects and toxicity.93 

In this context, our results indicate ligands 984, 903, 775, 
627, and 939 can inhibit the metabolism of drugs such as 
clozapine, caffeine, fluvoxamine, imipramine, olanzapine, 

Table 4. Prediction of CYPs inhibition and substrate for P-glycoprotein

Ligand
Substrate for 

P-glycoprotein

CYP450 inhibitor

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

Safinamide no no yes no yes yes

325 yes no no no no yes

412 yes no yes yes yes yes

984 no yes yes yes no yes

903 no yes yes yes no yes

775 yes yes yes no yes yes

309 yes no yes no yes no

596 no no yes yes yes yes

627 yes yes yes yes yes yes

939 no yes yes yes yes yes
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and zileuton due to CYP1A2 inhibition; ligands 412, 984, 
903, 775, 309, 596, 627, and 939 inhibit the metabolism 
of citalopram, omeprazole, phenytoin, and phenobarbital 
because of CYP2C19 inhibition; ligands 412, 984, 903, 
775, 309, 596, 672, and 939 interfere with the metabolism 
of carvedilol, celecoxib, glipizide, ibuprofen, irbesartan, 
and losartan by inhibiting CYP2C9; ligands 412, 775, 309, 
596, 627, and 939 inhibit the metabolism of amitryptiline, 
paroxetine, fluoxetine, carvedilol, metoprolol, haloperidol, 
donepezil, risperidone, codeine, and tramadol due inhibition 
of CYP2D6; while ligands 325, 412, 984, 903, 775, 309, 596, 
627, and 939 inhibit the metabolism of alprazolam, diazepam, 
amlodipine, cyclosporin, atorvastatin, simvastatin, sildenafil, 
zolpidem and verapamil due to CYP3A4 inhibition.94,95

In this instance, in silico analysis helps to predict 
aspects related to clinical practice such as the identification 
of potential drug-drug pharmacokinetic interactions, i.e., 
when one drug modifies the fluctuations in the plasma 
concentrations of another by influencing the absorption, 
distribution, metabolism, and elimination when both are 
administrated simultaneously.96 Noting that it is imperative 
to underscore that the metabolism of drugs entails the 
involvement of enzymes apart from CYPs.84

Potential candidates for MAO-B inhibitor drugs

The scores and interaction profiles of the ligands with 
the target residues were compared with those of the standard 
molecule (safinamide) in an attempt to aid in the selection 
of ligands with the best interaction profiles with MAO-B. 
Safinamide had an average score of 89.57 and interacted 
with the co-factor FAD600 as well as the residues Leu164, 
Gln206, Try435, Tyr398, Phe343, Leu171, Cys172, Tyr326, 
Ile199, and Ile316. 

The ligands 627, 596, 775, and 984 were elected as the 
most promising because they presented scores higher than 

safinamide. Emphasizing that there was agreement on the 
interaction between the residues found in our safinamide 
molecular docking and the experimental crystallography 
data published by Binda et al.,97 where the only differences 
found were for the residues Leu164 in the molecular 
docking and Phe103 and Tyr60 in the crystallography data. 

The interaction profiles and the scores of the ligands 596, 
627, 775, and 984 can be seen in Table 5.

MAO-B has three functional domains in its structure: 
the aromatic cage consisting of Try398, Tyr435, and the 
co-factor FAD; and the substrate entry site that is separated 
from the substrate binding site by residues Phe168, Leu171, 
Ile199, and Try326. The substrate binding site is made up 
of residues Leu171, Tyr188, Tyr326 and Phe343; while the 
residues Gly58, Tyr60, Ile60, Gln206, Tyr326, and Cys397 
belong to the active site of MAO-B.98-100

According to Reyes-Parada et al.,101 based on 
crystallography data and quantitative structure activity 
relationship studies, the Gln206 residue is relevant for 
maintaining the spatial orientation of the FAD co-factor 
in the active site as well as the orientation of residues that 
interact with ligands. Likewise, residues Tyr435, Tyr398, 
and Leu171 play important roles in guiding and stabilizing 
the binding of substrates and inhibitors in MAO-B, and 
residue Ile199 acts as a gate between these cavities. This 
makes the residues Try435, Tyr398, Leu171, and Ile199 
relevant to the structure and functionality of MAO-B, 
therefore, they represent promising targets for the inhibitory 
activity and inhibitors selection. Moreover, it is noteworthy 
that residues Ile199 and Tyr326 are reported as essential 
for inhibitor selectivity.90,91

In this context, the results obtained show the interactions 
of the ligands analyzed with the domains of the active site, 
aromatic cage, entry site, and substrate binding site, which 
are domains relevant for selective enzymatic inhibition, as 
seen in Figure 4.

Table 5. Scores and interactions among the ligands screened through molecular docking, druggability metrics, predictive pharmacokinetics, and toxicological 
in silico tests

Ligand Score Interactions with MAO-B

Safinamide 89.57 Leu164, Gln206, Try435, Tyr398, Phe343, Leu171, Cys172, Tyr326, Ile199, Ile316 and FAD600

984 96.35 Ile199, Tyr398, tyr435, Cys172, Leu171, Phe168, Trp119, Leu164 and FAD600

627 93.08 Ile316, Pro104, Ile199, Leu171, Phe343, Tyr398, Gln206, Tyr435, Tyr188, Cys172 and FAD600

775 90.73 Ile316, Ile199, Ile198, Cys172, Gly434, Tyr435, Leu171, Tyr326, Pro102 and FAD600

596 89.82 Leu164, Pro104, Ile199, Ile316, Tyr326, Ile198, Leu171, Cys172, Tyr188, Tyr398, Tyr435, Gly434, Gln206, FAD600

939 89.07 Tyr60, Phe343, Tyr398, Tyr435, Cys172, Ile199, Ile316, Tyr326, Leu171, Ile198, Gln206 and FAD600

412 88.77 Ile316, Leu164, Pro104, Ile199, Trp119, Ile198, Cys172, Tyr398, Tyr435, Gly434, Phe343, Leu171, Tyr326, FAD600

309 88.1 Phe343, Tyr398, Tyr434, Cys172, Leu171, Ile198, Tyr326, Ile199, Ile316, Trp119 and Leu164

903 88.09 Ile316, Tyr326, Gln206, Ile198, Tyr435, Tyr398, Ile199, Leu171 and FAD600

325 79.56 Gly434, Cys172, Ile316, Ile199, Phe168, Leu164, Tyr326, Leu171, Tyr398, Try435, FAD600
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In this sense, by reacting 4-(2-bromoacetyl)
benzenesulfonamide with an excess of acetamide, 
Shetnev et al.102 synthesized 4-(2-methyloxazol-4-yl)
benzenesulfonamide and tested this compound against 
MAO-A and MAO-B (IC50 of 43.3 and 3.47 µM, 
respectively), observing through molecular docking 
interactions of the compound primarily with residues from 
the substrate cavity. 

Shetnev et al.102 also report that compounds that bind 
to both the substrate and entrance cavities frequently 
exhibit submicromolar potencies because of the additional 
stabilization provided by nonpolar interactions within the 
lipophilic environment of the entrance cavity. Corroborating 
with Binda et al.97 concerning molecular docking results 
from selective MAO-B inhibitors contenting a benzyloxy 
substituent and inhibition constants in the range of 
0.1-0.5 µM, which also revealed occupation of the entrance 

and substrate binding cavities simultaneously.
Another noteworthy finding from the molecular docking 

analysis is the intermolecular interaction profile of the 
four ligands with the highest scores and the co-factor FAD 
regarding reversible or irreversible enzymatic inhibition. 
Pi-Pi-shaped interactions were observed between ligands 
627, 775, and 596, whereas ligand 984 had Pi-Alkyl 
interactions with the co-factor FAD. Bissantz et al.103 report 
that in addition to a preferred set of geometric ordering, 
intermolecular interactions involving aryl-type substituents 
typically take place in a hydrophobic setting where water 
molecules can modulate the positioning of atoms and 
functional groups, especially the aromatic ones.

Therefore, our results show that ligands 984, 672, 775, 
and 596 form intermolecular interactions with the co-factor 
FAD. Differently from irreversible inhibitors that typically 
bind covalently to the flavin residue’s N5 atom, irreversibly 

Figure 4. Safinamide and the ligands elected as possible MAO-B inhibitors show interactions with critical residues from each of the structural domains 
(the aromatic cage, the substrate entry, and the substrate binding) of MAO-B.
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deactivating the enzyme.104 Drugs that work through this 
mechanism, such as rasagiline and selegiline, can only be 
given once daily to prevent cumulative inhibition surpassing 
90% in the brain. Additionally, this impact can be reversed 
only by the synthesis of new enzymes.105 

To summarize, the molecular docking results 
demonstrate three key findings: (i) agreement with the 
crystallographic data of safinamide co-crystallized with 
MAO-B; (ii) interactions found in the ligands under 
analysis correspond to residues considered essential for 
selective enzymatic inhibition; and (iii) the intermolecular 
interactions observed with the FAD residue imply a 
reversible inhibition mechanism.

In addition, a methodological aspect of this work must 
be considered. Water molecules were removed in the 
docking analysis using the GOLD software, and according 
to Gaweska and Fitzpatrick,1 Lys296 in MAO-B interacts 
with a water molecule that also binds to N5 of the flavin 
cofactor, influencing the spatial orientation of the amino 
acids that make up the aromatic cage of MAO-B (Tyr398 
and Tyr435), and consequently in the spatial orientation 
concerning the enzyme’s substrates and ligands.

Similarly, Boppana et al.50 carried out molecular docking 
analyses in the GLIDE program, followed by refinement 
via sampling using Monte Carlo mathematical modeling, 
and observed in 70 MAO-B inhibitors interactions with 
the amino acids Tyr 60, pro102, Leu 171, Ile 198, Ile 199, 
Gln 206, Ile 316, Tyr 326, Phe 343, Tyr 398, and Tyr 435, 
where the compounds classified as having high or moderate 
inhibitory activity on MAO-B interacted with water or with 
the amide group of residue Gln 206 through hydrogen 
interactions.

Therefore, future studies should be conducted to 
evaluate the influence of water on the ligands analyzed, as 
reported by LaBute et al.106 concerning the effects of water 
and interactions mediated by metal centers in molecular 
docking calculations.

Lastly, computational methods are not exempt from 
validation by in vitro and in vivo studies. However, they 
can reduce costs and times during the early stages of 
drug discovery by speeding up the conversion of results 
into qualified results for developing drug candidates, 
particularly in high-throughput methods that analyze a 
large number of molecules. 107

Conclusions

This computational study was able to: (i) propose a 
pharmacophoric model for MAO-B inhibition presenting 
two aromatic and one hydrogen acceptor regions; (ii) to 
identify 104 ligands with potential for developing new 

MAO-B inhibitors by approaches such as bioisosterism and 
structural simplification; and (iii) to discover 4 potential 
selective and reversible MAO-B inhibitors through virtual 
screening.

According to the results obtained, the substances 
1-[[2-(difluoromethoxy)phenyl]methyl]-4-(pyrrolo[3,2-b]
pyridin-1-ylmethyl)piperidin-4-ol (ligand  775),  
3-[2-(1,3-benzodioxol-5-yl)-2-oxoethyl]-6-bromo-
quinazolin-4-one (ligand 984), 6-chloroimidazo[1,2-a]
pyridin-2-yl)-[4-(2- pyrazol-1-ylethyl)piperidin-1-yl]
methanone (ligand 596), and (2-phenylimidazo[1,2-a]
pyridin-6-yl)-[(2R)-2-pyridin-2-ylpyrrolidin-1-yl]
methanone (ligand 627) present appropriate physicochemical 
properties for the development of pharmaceutical 
formulations for oral use, they did not generate toxicity 
alerts, and present suitable pharmacokinetic features. 

As a result, it is anticipated that due to comparison with 
data from known MAO-B inhibitors in the literature, these 
compounds present potential as drug leads or candidate to 
treat central nervous system disorders related to MAO-B 
higher activity.
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