User Interface Optimization using Genetic Programming with an Application to Landing Pages

Paulo Salem

The 9th ACM SIGCHI Symposium on Engineering Interactive Computing Systems June 26-29, 2017 - Lisbon, Portugal

The Problem

- Given some basic UI elements, generate UIs based on a specification that are optimal w.r.t. some performance metric.
- Elements: texts, images, colors, components, etc.
- Working example: landing pages
 - Users are directed to a special page
 - Users are motivated to take some action (e.g., subscribe to a newsletter)
 - Acquiring users is costly, therefore we want to maximize conversion rates

 $- conversion rate = \frac{actions taken}{total users}$

Existing Solutions using Genetic Algorithms

- Uls are individuals in a population
- Each UI's genome is a sequence of features
 - Color of components
 - Images
 - Texts
- By recombining and mutating features, new Uls evolve
- Users can select their prefered UIs
- Main problem: not general, cannot express arbitrary UIs

Feature 1	Feature 2	Feature 3	Feature 4
Combines with			
Feature 1	Feature 2	Feature 3	Feature 4
\downarrow			
Feature 1	Feature 2	Feature 3	Feature 4

Limitations of Existing Solutions

Cannot express intrincate UI structural possibilities.

4 Paulo Salem | User Interface Optimization using Genetic Programming with an Application to Landing Pages @ EICS 2017 - Lisbon, Portugal

The Proposed Approach

Genetic Programming

- Programmatic specifications
 - Program expressions instead of features.
- Structured representations
 - Sections, subsections, components, subcomponents, etc.
 - Mimics the structure of the UIs themselves.
- Non-deterministic choices
- Fitness determined by the actions of many concurrent users (i.e., "crowdsourcing")
- ⇒ A general way to specify UIs suitable to evolutionary optimization

possibilities can grow exponentially

UI Specification

DELLEMC

Programmatic UI Specification

- Specification given programmatically
- Clear definition of hierarchies and nondeterministic choices
- Domain-Specific Language in Scala

Can also load content elements from XML:

- Text variations
- Image URLs variations
- Arbitrary HTML variations

```
Include(LeadGenBlock, variation = 1,
    Sequence(
       Choice(
          Define("opacity", "0.2"),
          Define("opacity", "0.4")
        ParameterValue("title" ->
                         Reference("title")),
        ParameterValue("tagline" ->
                         Reference("tagline")),
        // (...)
    ))
<multi-value name="title">
   <text>Recycled furniture and home accessories</text>
   <text>Lovely and recycled furniture</text>
   <text>Taste, recycled</text>
   <text>Learn more about recycling with taste</text>
</multi-value>
```

Programmatic UI Specification

Program statement	Meaning	
Sequence(a, b)	The sequential composition of two program statements.	
Choice(a, b)	The non-deterministic choice among two program statements.	
<pre>Define(name, value)</pre>	Defines a variable named <i>name</i> with content <i>value</i> .	
Reference(name)	A reference to the value of the variable named name.	
<pre>Include(blockName, variation, init)</pre>	The rendering of a template named <i>blockName</i> .	
<pre>ParameterValue(name -> reference)</pre>	Defines that a parameter named <i>name</i> has the value specified by <i>reference</i> . This must be used within an <i>Include</i> 's <i>init</i> .	
Div, B, Span, etc	Primitive rendering operations, which allow the writing of the actual HTML that will be displayed later to the user.	

DELLEMC

9 Paulo Salem | User Interface Optimization using Genetic Programming with an Application to Landing Pages @ EICS 2017 - Lisbon, Portugal

UI Recombination

Crossover

Mutation

Complete Process

DELLEMC

Evaluation

Evaluation

Evaluation

- ~ 6¹⁰ possible concrete UIs
 - Combinatorial explosion
- 5,462 users were recruited for experiment
- 20% performance increase
 - Conversion rate (optimized) = 12%
 - Conversion rate (control) = 9.9%
- Non-numerical insights:
 - 8 out of 10 best UIs mentions discounts or monetary savings
 - However, it is not always clear *why* performance improves
- Seasonal effects (i.e., weekends seem to change user behavior).

Efficiency ratio > $1.0 \Rightarrow$ optimization performs better than control UI

Conclusion

Future Work

- More experiments, in different domains
- More independent controls, by professional designers
- More programming primitives for UI specification
 - Constraints of various kinds
- More basic UI elements to be composed
- Variations of crossover and mutation operators

- Designers must think in terms of **UI families** instead of unique UIs.
- **Programmatic**: allows for the specification of arbitrary UI families.
- Foundation for general UI optimization based on Genetic Programming and similar techniques.

DELLEMO

- Example uses Web pages, but the approach is general to any UI which:
 - Can be built out of simpler elements
 - Can be instrumented in order to record user actions
 - Has a clear performance metric to be optimized
- Aims at **making designers more productive**, not at substituting them.

###